Atlas construction and image analysis using statistical cardiac models

Center for Computational Imaging & Simulation Technologies in Biomedicine
Universitat Pompeu Fabra, Barcelona, Spain
Networking Center on Biomedical Research – Bioengineering, Biomaterials and Nanomedicine
mathieu.decraene@upf.edu
www.cilab.upf.edu
WHY DO WE NEED ATLAS ES OF THE HEART?
Why do we need atlases of the heart?

1. **Integrated image-based biomarkers**

Looking at multiple levels

- **Global** shape
- **Local** shape
- **Motion / Deformation**
Why do we need atlases of the heart?

1. **Integrated image-based biomarkers**

 Probabilistic biomarkers

 Encode normality

 P-value of abnormality

Duchateau et al, STACOM (2010)
Why do we need atlases the heart?

2. Integrated multimodal information for patient-specific modeling
2 EVOLUTIONS AND CHALLENGES IN HEART ATLAS CONSTRUCTION
From single subject to population atlases

Affine + nonrigid diffeomorphic registration

Reference

Average up to affine transform: The atlas image

Segment

Triangulate

Apply inverse transforms

Apply average non rigid transform

Average non rigid transformation
From monomodal to multimodal atlases

POINT DISTRIBUTION MODEL

STATISTICAL INTENSITY MODEL

MODEL TO IMAGE ADAPTATION/MATCHING

Create automatically by image simulation

From **spatial** to **spatiotemporal** atlases

- Two parameterizations
 - a and b, subject and cardiac phase
 - Each in their own space with orthogonal basis

From \textbf{spatial} to \textbf{spatiotemporal} atlases

- Two parameterizations
 - a and b, subject and cardiac phase
 - Each in their own space with orthogonal basis

$\mathbf{x}^{s,p} = \left[\Phi^V \mathbf{a}^s \right]^V \mathbf{b}^p$

From **single object** to **multi-objects atlases**

- Multiple anatomical levels and topologies
 - 4 chambers
 - Tissue properties
 - Muscle & Purkinje fibers
 - Coronaries
From **scalar objects to vectors & tensors**

- **DTI-based fiber orientation**

 - Muñoz-Moreno, & Frangi ICIP (2010, in press)
 - Toussaint et al. Miccai (2010, in press)
3 CONCLUSIONS & PERSPECTIVES
Shape is not enough
Motion is not enough

Source: http://jcmr-online.com/imedia/1712877943433156/supp1.mpg

Erikson et al. JCMR, 12(9), (2010)
Perspectives

- **On biomarkers**
 - Towards complex indexes
 - Integrate shape (local & global), electrical activation, motion/deformation, and flow
 - Towards new probabilistic biomarkers
 - Distance to populations/manifolds

- **On data integration**
 - Multiple-layers visualization of heart function
 - Multi-level patient specific models
Patient-specific simulation and virtual populations

FEM Model

Geometrical Model

Functional Model

Electrical Multiscale Modeling

Simulation

\[\nabla \cdot (\sigma_e \nabla \phi_i) = \beta I_m - I_{si} \]

\[\nabla \cdot (\sigma_e \nabla \phi_e) = -\beta I_m - I_{se} \]

\[I_m = C_m + \frac{\partial \phi_m}{\partial t} I_{ion} \]

\[\nabla \cdot (\sigma_i \nabla \phi_i) = \beta I_m - I_{si} \]

Extracellular $\phi_e \sigma_e$

Intracellular $\phi_i \sigma_i$

Extramycocardial $\phi_0 \sigma_0$

ϕ_{body}

Hoogendoorn et al. STACOM, (2010)
Thanks