Added value of a statistical atlas-based quantification of motion abnormalities for the prediction of CRT response

EuroEcho 2010 – Copenhagen (DK) – 10/12/2010

N. Duchateau1,2, A. Doltra3, E. Silva3, M. De Craene1,2, G. Piella1,2, L. Mont3, Ma. A. Castel3, J. Brugada3, M. Sitges3, A. F. Frangi1,2,4

(1) CISTIB, Universitat Pompeu Fabra, Barcelona, Spain
(2) Ciber-BBN, Spain
(3) Hospital Clinic, IDIBAPS, Universitat de Barcelona, Spain
(4) ICREA, Spain
Why quantifying abnormalities? CRT context

- Lack of reproducibility in large scale studies [1]
- Is there a “universal” index? [2,3,4]
- Changing the strategy?

[5] Non-responders with the current guidelines:
- 30% (clinical response)
- 50% (echo response)

- Ejection fraction <35%
- QRS duration >120ms
- NYHA classification (II)-III-IV

[1] Stellbrink et al., EHJ Suppl. 2004
[2] Chung et al., Circulation 2008
Why quantifying abnormalities? CRT context

- Lack of reproducibility in large scale studies [1]
- Is there a “universal” index? [2,3,4]
- Changing the strategy?

Patient classification into specific etiologies of HF [6]

- Correction of specific mechanisms of dyssynchrony conditions response
- Predictive value of specific classes
 - Septal flash [6,7]
 - Septal rebound stretch [8]
 - Apical transverse motion [9]

[1] Stellbrink et al., EHJ Suppl. 2004
[2] Chung et al., Circulation 2008
[6] Parsai et al., EHJ 2009
[7] Parsai et al., EHJ 2009
[9] Voigt et al., EHJ 2009

[5] Non-responders with the current guidelines:
 - 30% (clinical response)
 - 50% (echo response)
What is a “septal flash”?

Fig. 3: Septal flash mechanism

Healthy volunteer

CRT candidate with SF

Healthy volunteer

CRT candidate with SF

OFF
Effect of CRT on septal flash

Pre-CRT

Follow-up (6 months)
Why quantifying abnormalities? CRT context

- Lack of reproducibility in large scale studies [1]
- Is there a “universal” index? [2,3,4]
- Changing the strategy?

- Correction of specific mechanisms of dyssynchrony conditions response
- Predictive value of specific classes

The ability of accurately identifying a SF will fully condition its predictive value

How to identify a SF? [6,7]
Is visual inspection enough?

[1] Stellbrink et al., EHJ Suppl. 2004
[2] Chung et al., Circulation 2008
[6] Parsai et al., EHJ 2009
[7] Parsai et al., EHJ 2009
[9] Voigt et al., EHJ 2009
How to identify a SF? Is visual inspection enough?

- Mid inferoseptal
- Apical septal
- Basal inferoseptal

???
How to identify a SF? Is visual inspection enough?

Large – whole septum

Small – whole septum

Large – basal septum

Ambiguous
Statistical atlases: new concept for cardiac studies

ATLAS = average + statistical representation of variability within a population

[10] Ordas et al., ISPA 2006
[12] De Craene et al., FIMH 2009
Atlas-based quantification of motion abnormalities

Healthy subjects

Atlas

Radial velocity

Long. velocity

average

variance

ECG

[14] Duchateau et al., ESC 2010
Atlas-based quantification of motion abnormalities

Atlas

Healthy subjects

Patient to study

Radial velocity

Long. velocity

ECG

p-value (log scale)

[14] Duchateau et al., ESC 2010
Data representation

Local maps at fixed time t

- End diastole (1)
- Septal activation (2)
- Lateral activation (3)
- Ejection (4)

- Inward
- Outward

Temporal evolution at a fixed anatomical point

- p-value (log scale)

Red = large abnormality
Data representation

Spatiotemporal maps of abnormality

Blue = Inward (vp<0)
Red = Outward (vp>0)

[15] Duchateau et al., STACOM-MICCAI 2010
Contributions

- **New** quantitative indexes [quantification of motion abnormalities]

Statistical atlas: added-value for clinical studies
- Automatic, **reproducible**
- Information still available at every location \((x,t)\) [not heart segments only]
- Intrinsic **comparison to “normality”**

- **Generic** methods applicable to almost any
 - imaging modality
 - studied parameter and mechanism

In this work: **Quantification** of a specific pattern: **septal flash (SF)**
Patient population

21 Healthy volunteers

≈ 60 frames/s
0.24 x 0.24 mm²

2D echo, 4-chamber view

88 candidates OFF / ON / FU (11 ± 2 months)
EF < 35%, QRS duration > 120ms, and (or) NYHA class III-IV

≈ 30 frames/s
0.24 x 0.24 mm²

CRT response:

Clinical

6min walking test increase ≥ 10%
or NYHA class reduction ≥ 1 point

Echocardiographic

LV end-systolic volume reduction ≥ 15%

(in alive patients without heart transplantation)
Patient population

<table>
<thead>
<tr>
<th>CRT candidates</th>
<th>Volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td>Number</td>
<td>88</td>
</tr>
<tr>
<td>Age (years)</td>
<td>68 ± 9</td>
</tr>
<tr>
<td>Male gender</td>
<td>64 (73 %)</td>
</tr>
<tr>
<td>QRS width (ms)</td>
<td>178 ± 29</td>
</tr>
<tr>
<td>6min walking test (m)</td>
<td>289 ± 82</td>
</tr>
<tr>
<td>NYHA functional class</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>23 (26 %)</td>
</tr>
<tr>
<td>III</td>
<td>59 (64 %)</td>
</tr>
<tr>
<td>IV</td>
<td>7 (8 %)</td>
</tr>
<tr>
<td>LV end-diastolic volume (mL)</td>
<td>247 ± 88</td>
</tr>
<tr>
<td>LV end-systolic volume (mL)</td>
<td>186 ± 76</td>
</tr>
<tr>
<td>LV ejection fraction (%)</td>
<td>25 ± 8</td>
</tr>
</tbody>
</table>

CRT response:

(in alive patients without heart transplantation)

Clinical
6min walking test increase ≥ 10%
or NYHA class reduction ≥ 1 point

Echocardiographic
LV end-systolic volume reduction ≥ 15%
New quantitative indexes [quantification of motion abnormalities]

Statistical atlas: added-value for clinical studies
- Automatic, reproducible
- Information still available at every location \((x,t)\) [not heart segments only]
- Intrinsic comparison to “normality”

Some questions to answer

a) PV-maps vs visual inspection: agreement?

b) Predicitive value of SF at baseline? Visually Atlas-based

c) Evolution after the therapy?
PV-maps vs visual inspection: agreement?

Maps-based

<table>
<thead>
<tr>
<th></th>
<th>SF</th>
<th>No SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>No SF</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>

Cohen’s Kappa = 0.87
Observed agreement = 0.94
Predicitive value of SF at baseline?

<table>
<thead>
<tr>
<th></th>
<th>Responders</th>
<th>Clinical response</th>
<th>Echocardiographic response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Clinical</td>
<td>Echo</td>
</tr>
<tr>
<td>CRT</td>
<td>88</td>
<td>72</td>
<td>52</td>
</tr>
<tr>
<td>SF (M-mode)</td>
<td>58</td>
<td>50</td>
<td>44</td>
</tr>
</tbody>
</table>

* Positive predictive value = percentage of responders among the considered subset of patients

Response rate with the current guidelines:

- 0.7 (clinical response)
- 0.5 (echo response)

- Ejection fraction <35%
- QRS duration >120ms
- and/or NYHA classification III-IV

Predictive value of SF at baseline?

<table>
<thead>
<tr>
<th>Responders</th>
<th>Clinical response</th>
<th>Echocardiographic response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Clinical</td>
</tr>
<tr>
<td>CRT</td>
<td>88</td>
<td>72</td>
</tr>
<tr>
<td>SF (M-mode)</td>
<td>58</td>
<td>50</td>
</tr>
<tr>
<td>SF (atlas)</td>
<td>60</td>
<td>52</td>
</tr>
</tbody>
</table>

* Positive predictive value = percentage of responders among the considered subset of patients

Improved prediction using atlas tools?

[8] Response rate with the current guidelines:
- 0.7 (clinical response)
- 0.5 (echo response)

- Ejection fraction <35%
- QRS duration >120ms
- and/or NYHA classification III-IV

Predictive value of SF at baseline?

<table>
<thead>
<tr>
<th>Study</th>
<th>CRT #</th>
<th>SF #</th>
<th>Response rate</th>
<th>LVESV reduction ≥ 15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duchateau, EuroEcho 2010</td>
<td>88</td>
<td>58</td>
<td>0.76 (visual)</td>
<td>LVESV reduction ≥ 15%</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>60</td>
<td>0.75 (atlas)</td>
<td>LVESV reduction ≥ 15%</td>
</tr>
<tr>
<td>Cikes, HSF 2009</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>LVESV reduction ≥ 10%</td>
</tr>
<tr>
<td>Cikes, ESC 2010</td>
<td>12</td>
<td>12</td>
<td>1 ?</td>
<td>LVESV reduction ≥ 10%</td>
</tr>
<tr>
<td>Doltra, ESC 2010</td>
<td>80</td>
<td>35</td>
<td>0.8</td>
<td>LVESV reduction ≥ 15%</td>
</tr>
<tr>
<td>Parsai, EHJ 2009</td>
<td>161</td>
<td>87</td>
<td>0.89</td>
<td>NYHA Class reduction ≥ 1 OR LVESV reduction ≥ 10%</td>
</tr>
<tr>
<td>Parsai, EHJ 2009</td>
<td>52</td>
<td>36</td>
<td>1</td>
<td>LVESV reduction ≥ 10%</td>
</tr>
<tr>
<td>Abdul-Jawal, SEC 2010</td>
<td>34</td>
<td>23</td>
<td>0.61</td>
<td>EF increase ≥ 6% OR ED diameter reduction ≥ 15%</td>
</tr>
</tbody>
</table>

Response rate with the current guidelines:

- **0.7** (clinical response)
- **0.5** (echo response)

- Ejection fraction <35%
- QRS duration >120ms
- and/or NYHA classification III-IV
Evolution after the therapy

CRT #9
Septal flash

CRT #8
Septal flash

CRT #12
Left-right interaction

OFF

Local p-value (log scale)

Follow-up

Blue = Inward (vp<0)
Red = Outward (vp>0)
Evolution after the therapy

CRT #9
Septal flash

CRT #8
Septal flash

CRT #12
Left-right interaction

OFF

Follow-up

Local p-value (log scale)

Blue = Inward (vp<0)
Red = Outward (vp>0)
Evolution after the therapy

- Correction of specific mechanisms of dyssynchrony conditions response \[9,10\]

[6] Parsai et al., EHJ 2009
[7] Parsai et al., EHJ 2009

Blue = Inward (vp<0)
Red = Outward (vp>0)
Conclusions

a) PV-maps vs visual inspection: agreement?

b) Predictive value of SF at baseline?

Visually
Atlas-based

c) Evolution after the therapy?

- New quantitative indexes [quantification of motion abnormalities]

- Statistical atlas: added-value for clinical studies
 - Automatic, reproducible
 - Information still available at every location \((x,t)\) [not heart segments only]
 - Intrinsic comparison to “normality”

- Generic methods applicable to almost any
 - imaging modality
 - studied parameter and mechanism
Acknowledgements

- CISTIB, Universitat Pompeu Fabra
- Image registration team: M. De Craene, G. Piella
- Hospital Clínic, Barcelona: A. Doltra, E. Silva, M. Sitges, B. H. Bijnens
Thanks !...Any questions?